ar X iv : 1 21 1 . 24 05 v 1 [ cs . G T ] 1 1 N ov 2 01 2 Rank - 1 Games With Exponentially Many Nash Equilibria

نویسنده

  • Bernhard von Stengel
چکیده

The rank of a bimatrix game (A,B) is the rank of the matrix A + B. We give a construction of rank-1 games with exponentially many equilibria, which answers an open problem by Kannan and Theobald (2010).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c s / 05 01 05 2 v 1 [ cs . I T ] 2 1 Ja n 20 05 STOCHASTIC DIFFERENTIAL GAMES IN A NON - MARKOVIAN SETTING

Stochastic differential games are considered in a non-Markovian setting. Typically, in stochastic differential games the modulating process of the diffusion equation describing the state flow is taken to be Markovian. Then Nash equilibria or other types of solution such as Pareto equilibria are constructed using Hamilton-Jacobi-Bellman (HJB) equations. But in a non-Markovian setting the HJB met...

متن کامل

Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3

In an -approximate Nash equilibrium, a player can gain at most in expectation by unilateral deviation. An -well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within of the best response payoff. Daskalakis, Mehta and Papadimitriou [8] conjectured that every win-lose bimatrix game has a 2 3 -well-suppor...

متن کامل

Rank-1 Games With Exponentially Many Nash Equilibria

The rank of a bimatrix game (A,B) is the rank of the matrix A + B. We give a construction of rank-1 games with exponentially many equilibria, which answers an open problem by Kannan and Theobald (2010).

متن کامل

On Game-Theoretic Risk Management (Part Two) - Algorithms to Compute Nash-Equilibria in Games with Distributions as Payoffs

The game-theoretic risk management framework put forth in the precursor work “Towards a Theory of Games with Payoffs that are ProbabilityDistributions” ( arXiv:1506.07368 [q-fin.EC]) is herein extended by algorithmic details on how to compute equilibria in games where the payoffs are probability distributions. Our approach is “data driven” in the sense that we assume empirical data (measurement...

متن کامل

ar X iv : m at h / 04 05 17 6 v 3 [ m at h . R T ] 1 7 N ov 2 00 4 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012